Publication:
The relaxed Newton method derivative: Its dynamics and non-linear properties

dc.contributor.authorÖzer, Mehmet
dc.contributor.authorValaristos, Antonios
dc.contributor.authorMiliou, Amalia N.
dc.contributor.authorAnagnostopoulos, Antonios N.
dc.contributor.authorCenys, Antanas
dc.contributor.authorHacibekiroğlu, Gürsel
dc.contributor.authorPOLATOĞLU, YAŞAR
dc.contributor.authorIDTR2509tr_TR
dc.contributor.authorIDTR199370tr_TR
dc.contributor.authorIDTR116304tr_TR
dc.date.accessioned2016-04-26T11:41:44Z
dc.date.available2016-04-26T11:41:44Z
dc.date.issued2008-04-01
dc.description.abstractThe dynamic behaviour of the one-dimensional family of maps f(x) = c(2)[(a - 1)x + c(1)](-lambda/(alpha-1)) is examined, for representative values of the control parameters a, c(1), c(2) and lambda. The maps under consideration are of special interest, since they are solutions of the relaxed Newton method derivative being equal to a constant a. The maps f(x) are also proved to be solutions of a non-linear differential equation with outstanding applications in the field of power electronics. The recurrent form of these maps, after excessive iterations, shows, in an x(n) versus lambda plot, an initial exponential decay followed by a bifurcation. The value of lambda at which this bifurcation takes place depends on the values of the parameters a, c(1) and c(2). This corresponds to a switch to an oscillatory behaviour with amplitudes of f(x) undergoing a period doubling. For values of a higher than 1 and at higher values of lambda a reverse bifurcation occurs. The corresponding branches converge and a bleb is formed for values of the parameter c(1) between 1 and 1.20. This behaviour is confirmed by calculating the corresponding Lyapunov exponents. (c) 2007 Elsevier Ltd. All rights reserved.tr_TR
dc.identifier.issn0362-546X
dc.identifier.scopus2-s2.0-38749150988
dc.identifier.scopus2-s2.0-38749150988en
dc.identifier.urihttp://hdl.handle.net/11413/1206
dc.identifier.wos254032400009
dc.identifier.wos254032400009en
dc.language.isoen_UStr_TR
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLANDtr_TR
dc.relationNONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONStr_TR
dc.subjectrelaxed Newton methodtr_TR
dc.subjectbifurcationtr_TR
dc.subjectçatallanmatr_TR
dc.titleThe relaxed Newton method derivative: Its dynamics and non-linear propertiestr_TR
dc.typeArticle
dspace.entity.typePublication
local.indexed.atscopus
local.indexed.atwos
relation.isAuthorOfPublication82125b62-3d7a-489a-8c3f-a104e98d346e
relation.isAuthorOfPublication.latestForDiscovery82125b62-3d7a-489a-8c3f-a104e98d346e

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: