Publication:
On quasiconformal harmonic mappings lifting to minimal surfaces

dc.contributor.authorTaştan, Hakan Mete
dc.contributor.authorPOLATOĞLU, YAŞAR
dc.contributor.authorID175835tr_TR
dc.contributor.authorID199370
dc.date.accessioned2018-07-11T10:06:59Z
dc.date.available2018-07-11T10:06:59Z
dc.date.issued2013
dc.description.abstractWe prove a growth theorem for a function to belong to the class Sigma(mu; a) and generalize a Weierstrass-Enneper representation type theorem for the minimal surfaces given in [5] to spacelike minimal surfaces which lie in 3-dimensional Lorentz-Minkowski space L-3. We also obtain some estimates of the Gaussian curvature of. the minimal surfaces in 3-dimensional Euclidean space R-3 and of the spacelike minimal surfaces in L-3.tr_TR
dc.identifier.issn1300-0098
dc.identifier.scopus2-s2.0-84878168601
dc.identifier.scopus2-s2.0-84878168601en
dc.identifier.urihttps://doi.org/10.3906/mat-1106-36
dc.identifier.urihttps://hdl.handle.net/11413/2009
dc.identifier.wos321227100008
dc.identifier.wos321227100008en
dc.language.isoen_UStr_TR
dc.publisherScientific Technical Research Council Turkey-Tubitak, Ataturk Bulvarı No 221, Kavaklıdere, Tr-06100 Ankara, Turkeytr_TR
dc.relationTurkish Journal of Mathematicstr_TR
dc.subjectMinimal surfacetr_TR
dc.subjectisothermal parameterstr_TR
dc.subjectWeierstrass-Enneper representationtr_TR
dc.subjectquasiconformal harmonic mappingtr_TR
dc.titleOn quasiconformal harmonic mappings lifting to minimal surfacestr_TR
dc.typeArticle
dspace.entity.typePublication
local.indexed.atscopus
local.indexed.atwos
relation.isAuthorOfPublication82125b62-3d7a-489a-8c3f-a104e98d346e
relation.isAuthorOfPublication.latestForDiscovery82125b62-3d7a-489a-8c3f-a104e98d346e

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: